This paper proposes a two-stage adaptive method for restoration of images corrupted with impulse noise. In the first stage, the pixels which are most likely contaminated by noise are detected based on their intensity values. In the second stage, an efficient average filtering algorithm is used to remove those noisy pixels from the image. Only pixels which are determined to be noisy in the first stage are processed in the second stage. The remaining pixels of the first stage are not processed further and are just copied to their corresponding locations in the restored image. The experimental results for the proposed method demonstrate that it is faster and simpler than even median filtering, and it is very efficient for images corrupted with a wide range of impulse noise densities varying from 10% to 90%. Because of its simplicity, high speed, and low computational complexity, the proposed method can be used in realtime digital image applications, e.g., in consumer electronic products such as digital televisions and cameras.