Abstract. In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) described by generalized equations in the formwhere both mappings G and Q are set-valued. Such models particularly arise from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish verifiable necessary conditions for the general problems under consideration and for their important specifications using modern tools of variational analysis and generalized differentiation. The application of the obtained necessary optimality conditions is illustrated by a numerical example from bilevel programming with convex while nondifferentiable data.