Abstract:We consider the problem of estimating the matching map between two sets of feature-vectors observed in a noisy environment and contaminated by outliers. It was already known in the literature that in the outlier-free setting, the least sum of squares (LSS) and the least sum of logarithms (LSL) are both minimax-rate-optimal. It has been recently proved that the optimality properties of the LSS continue to hold in the case the data sets contain outliers. In this work, we show that the same is true for the LSL as… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.