Massive MIMO is a variant of multiuser MIMO in which the number of antennas at the base station (BS) M is very large and typically much larger than the number of served users (data streams) K. Recent research has widely investigated the system-level advantages of massive MIMO and, in particular, the beneficial effect of increasing the number of antennas M . These benefits, however, come at the cost of a dramatic increase in hardware and computational complexity. This is partly due to the fact that the BS needs to compute precoding/receiving vectors in order to coherently transmit/detect data to/from each user, where the resulting complexity grows proportionally to the number of antennas M and the number of served users K. Recently, different algorithms based on tools from asymptotic random matrix theory and/or approximated message passing have been proposed to reduce such complexity. The underlying assumption in all these techniques, however, is that the exact statistics (covariance matrix) of the channel vectors of the users is a priori known. This is far from being realistic, especially taking into account that, in the high-dim regime of M ≫ 1, estimating the channel covariance matrices of the users is also challenging in terms of both computation and storage requirements. In this paper, we propose a novel technique for computing the precoder/detector in a massive MIMO system. Our method is based on the randomized Kaczmarz algorithm and does not require a priori knowledge of the statistics of the users channel vectors. We analyze the performance of our proposed algorithm theoretically and compare its performance with that of other techniques based on random matrix theory and approximate message