2004
DOI: 10.1524/auto.52.4.151.29416
|View full text |Cite
|
Sign up to set email alerts
|

Optimierung mit Genetischen Algorithmen und eine Anwendung zur Modellreduktion (Optimization with Genetic Algorithms and an Application for Model Reduction)

Abstract: Genetische Algorithmen sind unter gewissen Voraussetzungen in der Lage, auch komplexe Optimierungsprobleme zu behandeln und aus einer sehr großen Zahl von möglichen Lösungen die beste oder zumindest sehr gute im Sinne eines Gütemaßes zu ermitteln. Nach dem Vorbild natürlicher Auslese und Fortpflanzung werden dabei Lösungskandidaten hoher Güte bevorzugt zur Erzeugung neuer Kandidaten verwendet, in der Erwartung, schrittweise zu noch besseren Lösungen zu gelangen. Der Beitrag gibt eine Einführung in die Grundlag… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2010
2010
2023
2023

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 1 publication
0
4
0
Order By: Relevance
“…Additionally, the mutation probability underwent incremental changes in steps of 0.1, ranging from p m = 0.1 to p m = 0.5. The selection of these parameter bounds for the crossover probability is grounded in their established prevalence within the literature [32], [33]. As for the mutation probability limits, these were determined empirically.…”
Section: Optimal Parameters For Genetic Algorithmsmentioning
confidence: 99%
“…Additionally, the mutation probability underwent incremental changes in steps of 0.1, ranging from p m = 0.1 to p m = 0.5. The selection of these parameter bounds for the crossover probability is grounded in their established prevalence within the literature [32], [33]. As for the mutation probability limits, these were determined empirically.…”
Section: Optimal Parameters For Genetic Algorithmsmentioning
confidence: 99%
“…Thus, to avoid local minima in the search process, global optimization strategies can be used. One common strategy known for its robustness end flexibility is the GA [61][62][63][64][65]. GA can be assigned to heuristic optimization methods.…”
Section: State Of the Art And Related Workmentioning
confidence: 99%
“…In this approach, individuals with rank 1 represent those with the lowest fitness value, whereas rank n describes the best [64]. To determine the probability of selection, [82] suggests the following procedure: the expected value E max is assigned (1 ≤ E max ≤ 2) to the highest-ranked individual.…”
Section: Genetic Algorithmmentioning
confidence: 99%
See 1 more Smart Citation