Effluents discharged by poultry meat industries are heavily polluted with raw materials, such as fat, blood residues, and proteins. Thus, untreated effluents directly discharged into the environment may constitute a public health threat. This study aims to evaluate the bacterial diversity of three water qualities: industrial poultry wastewater (PWW), tap water (TW), and PWW diluted with TW (50 : 50) (V/V) (TWPWW) by the combination of culture-independent and culture-dependent approaches. The total bacterial DNA was extracted using phenol/chloroform method. The hypervariable 16S rRNA region V3-V5 was amplified by PCR using universal primers. The amplicons were separated by vertical electrophoresis on a polyacrylamide gel of increasing denaturing gradient according to their richness in GC bases. Selected bands were reamplified and sequenced. Pure isolated bacteria from nutrient agar medium were characterized according to their morphological and biochemical characteristics. Genomic DNA from pure strains was extracted by boiling method, and a molecular amplification of the 16S–23S ITS region of the 16S rRNA gene was performed using the universal primers. Selected isolates were identified by sequencing. Results showed a high bacterial load and diversity in PWW in comparison with TW and TWPWW. A collection of 44 strains was obtained, and 25 of them were identified by sequencing. Proteobacteria represented 76% of isolated bacteria Gamma-Proteobacteria was the predominate isolate (68%). Other isolates were Firmicutes (8%), Bacteroidetes (12%), and Actinobacteria (8%). These isolates belong to different genera, namely, Pseudomonas, Acinetobacter, Proteus, Empedobacter, Corynebacterium, Enterobacter, Comamonas, Frondibacter, Leclercia, Staphylococcus, Atlantibacter, Klebsiella, and Microbacterium.