Objectives
To study the influence of nanoparticles of hydroxyapatite, zirconia, and glass on the wear and the microhardness of the organic matrix of experimental dental composite resin.
Materials and methods
The dental composite resin matrix was fabricated from bisphenol A-glycidyl methacrylate (Bis-GMA) (40 wt%), triethylene glycol dimethacrylate (TEGDMA) (36 wt%), and camphorquinone (0.4 wt%). Nanohydroxyapatite, glass, and zirconia fillers were silane treated. Nano-hydroxyapatite, glass, and zirconia were incorporated at three different concentrations. The polymerization of the dental composite resin was done using a light curing unit. Experimental dental composite resins were evaluated for wear and microhardness. The data were analyzed by one-way analysis of variance (ANOVA) test.
Results
The experimental dental composite resin composed of 32% of nanohydroxyapatite, 27% of zirconia, and 19% of glass as filler showed the minimum amount of wear. The Vickers hardness (VHN) number was observed to be minimum for the experimental dental composite resin composed of 24.1% of nanohydroxyapatite, 22% of zirconia, and 14.5% of glass.
Conclusion
The inclusion of 32% nanohydroxyapatite, 27% of zirconia, and 19% of glass as filler into the experimental dental composite resin decreased the wear and increased the hardness.
How to cite this article
Mirajkar CK, Winnier J, Hambire U. Effect of Nanohydroxyapatite, Zirconia and Glass Filler Particles on the Wear and Microhardness of Experimental Dental Composite Resin. Int J Clin Pediatr Dent 2023;16(S-1):S81–S84.