Abrasive machining processes have long been integral to various manufacturing industries, enabling precise material removal and surface finishing. In recent years, the integration of non-Newtonian fluids has emerged as a promising strategy to enhance the performance and efficiency of these processes. This review paper provides a comprehensive overview of the current state of research on abrasive machining processes, including abrasive lapping, abrasive polishing, and chemical mechanical polishing, and then analyzes in detail the abrasive machining processes enhanced with non-Newtonian fluids. It explores the fundamental principles underlying the rheological behavior of non-Newtonian fluids and their application in abrasive machining, with a focus on shear-thickening fluids. The paper will begin by introducing the abrasive machining processes, including abrasive lapping, abrasive polishing, and chemical mechanical polishing. Then, the current research status of non-Newtonian fluids will be comprehensively analyzed, and we will explore the enhancement of abrasive machining processes with non-Newtonian fluids. Finally, the paper will conclude with a discussion of the future directions and challenges in the field of abrasive machining enhanced with non-Newtonian fluids. Overall, this review aims to provide valuable insights into the potential benefits, limitations, and opportunities associated with the use of non-Newtonian fluids in abrasive machining, paving the way for further research and innovation in this promising area of manufacturing technology.