One of the major natural hazards occurring during the process of mining exploitation are endogenous fires. They cause very large material losses and constitute a threat to the health and life of the workers. Such fires usually start and develop in the goafs. The remaining coal and the oxygen-containing air flowing at a certain rate may lead to endogenous fires. The basic element of the assessment of the occurrence of an endogenous fire and the degree of its development is the chemical composition of the air flowing out of the longwall and the goafs. The monitoring of this composition also makes it possible to assess the severity of such a fire. The damage that can be caused by the endogenous fire requires scientific and experimental research being carried out on a wide scale in order to limit its occurrence and development. All papers and research mentioned in the paper aim to find a tool that will help to control the fires. The paper discusses the development of a new and original method of combating the threat of endogenous fires. It is based on the installation designed to feed an ash and water mixture or an ash and water mixture with carbon dioxide to goafs. The foundation of the paper is a method based on a vast depth of expertise and knowledge gained by the authors in the field of combating endogenous fires. The developed installation prepares and transports ash and water mixtures together with carbon dioxide to the zones with high probability of endogenous fires. The mixture is a preparation of the surface of a mine, and later, it is transported underground by pipelines to the goafs where a high level of the fire hazard was identified. The construction of the system and the composition of the mixture used are both original solutions; their practical application limited the process of spontaneous heating of coal. Monitoring the chemical composition of gases in the air of the goafs made it possible to control the effects of applied measures; it proved that carbon dioxide used as an inert gas disturbs the process of carbon oxidation, and the water and ash mixture limits the inflow of the air with oxygen. The advantage of the method is particularly evident in the case of the exploitation of deposits where coal has a short incubation time. This original approach allows for a better and more effective response to endogenous fires.