The cooling/lubrication methods applied in the turning operation significantly affect the machining performance. The control of the amount of cutting fluid used in the cooling/lubrication method is important both in terms of the total production cost and in terms of its effects on the environment. It is known that the Minimum Amount of Lubrication (MQL) technique applied for this purpose significantly reduces the amount of cutting fluid used while maintaining the machining performance. In recent years, nanoparticles have been added to these cutting fluids in order to increase the cooling/lubricating effect of the cutting fluids used in the MQL method. The extent to which the nanofluids obtained in this way improve the cutting performance is a subject that researchers focus on. In this study, studies on the effect of the use of nanoparticle reinforced cutting fluid (nanofluid) on the machining performance in the MQL cooling/lubrication method applied to the turning process were examined. In the study, studies on these materials, which are difficult to process, such as steel alloys, titanium alloys and nickel alloys as workpiece materials, were evaluated under separate headings. In these studies, machining performances were investigated under different cooling conditions, including dry machining, wet machining (conventional cooling), pure MQL and nanoparticle added MQL. In addition, it has been observed that more than one parameter, including different kinds of materials, different ratios by weight or volume, or different sizes, related to the addition of nanoparticles. In the results obtained from all these studies, it has been revealed that nanofluid application in the MQL method provides a significant improvement in machining performance compared to pure MQL and dry machining.