International audienceFlame spraying is frequently used for polyether ether ketone (PEEK) and PTFE coating deposition on metallic surfaces. However, this process has a certain number of limitations, particularly on the coating quality such as high porosity, low interfacial adherence, etc. For that reason a thermal post-processing step is often necessary. The objective of this study is to analyze the effects produced during a laser beam heat treatment on morphological structure (compactness) of PEEK coatings and their mechanical properties (adherence and tribology). The influence of the laser beam wavelength (by using a Nd:YAG, CO2 or diode lasers) on compactness of the flame sprayed PEEK coating deposited on metallic substrate (304L) was analyzed. Since the value of laser light absorption coefficient of the PEEK coating depends on the laser wavelength, an optimization of the operational parameters for each laser has been carried out in order to achieve melting but not burning of the PEEK coating. Nevertheless, whatever the laser wavelengths used, the results showed a good effect of the laser treatment: improvement of both polymer coating compactness and its adherence to the substrate