Fouling alleviation and control in full-scale reverse osmosis (RO) processes can be seriously hindered by ineffective fouling characterization. Fouling characterization is currently done primarily by measuring the silt density index (SDI) of feed water and monitoring the average permeate flux of full-scale RO processes. However, the SDI or related fouling indices have been known not capable to catch all possible foulants to RO membranes, and the average permeate flux may fail to correctly reflect membrane fouling in full-scale RO processes under certain circumstances.In this chapter, an advanced characterization method is introduced for membrane fouling in full-scale RO processes. An inclusive fouling potential indicator is proposed for a better characterization of the fouling strength of feed water, which is defined in a way that it can be easily determined with a small lab-scale RO membrane device and that it is readily usable to predict fouling development in the full-scale RO processes. A model based on basic membrane filtration and mass conservation principles is presented to calculate the average permeate flux in a full-scale RO process as fouling is progressing. The main intention of the advanced characterization method is to provide a reliable assessment of membrane fouling in the full-scale RO processes, so that the need for pilot tests can be significantly reduced.