2022
DOI: 10.1186/s40648-022-00232-w
|View full text |Cite
|
Sign up to set email alerts
|

Optimization algorithm for feedback and feedforward policies towards robot control robust to sensing failures

Abstract: Background and problem statement Model-free or learning-based control, in particular, reinforcement learning (RL), is expected to be applied for complex robotic tasks. Traditional RL requires that a policy to be optimized is state-dependent, that means, the policy is a kind of feedback (FB) controllers. Due to the necessity of correct state observation in such a FB controller, it is sensitive to sensing failures. To alleviate this drawback of the FB controllers, feedback error learning integrat… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 42 publications
0
0
0
Order By: Relevance