The applicability of linear model predictive control to the 2-butene metathesis process is studied. Similarly to industrial practice, the model predictive controller is configured on a supervisory level, providing set points to basic process controllers. The development of the process model is based on open-loop identification from input–output data extracted from dynamic simulation performed in Aspen Plus Dynamics. The model predictive controller, designed using MATLAB tools, supervises a system consisting of two inputs (feed rate and reaction temperature) and two outputs (ethylene and propylene production rates). The performance of the model-based control strategy is assessed by Aspen Plus Dynamics-Simulink co-simulation and compared to regulatory control through several indexes (mean square error, integral square error, peak error, and integral absolute error). The model predictive controller outperforms the feedback controller. Considerations regarding the workflow for the implementation of model predictive control in an industrial environment are provided.