The tremendous increase in human population and industrialization has exacerbated the existing problem of water pollution to a great extent. The textile industry is the major cause of this problem due to its significant use of organic synthetic dyes as coloring materials during the dyeing process. The presence of color in wastewater is a major environmental concern, as these dyes are resistant to degradation by physio-chemical treatments. Bioremediation is an attractive method that can completely degrade these dyes while also being cost-effective. This comprehensive review aims to provide a brief insight into bioremediation based on some of the latest emerging wastewater treatment technologies for the removal of synthetic dyes. Starting with the importance of decolorization of synthetic dyes and their environmental impacts, different physio-chemical treatment technologies are analyzed with a special emphasis on their limitations. The bioremediation of textile wastewater with detailed biodegradation mechanisms using different bacterial species (bacteria, fungal, algae, enzyme, and mixed culture) under aerobic and anaerobic conditions is thoroughly discussed. In this article, the major factors affecting the implementation of biological treatment are explained. In addition, the latest emerging treatment technologies, such as nano-bio materials, genetic engineering, phytoremediation, electro-bioremediation (microbial electrochemistry technology, MET), and integrated/hybrid technologies (such as biological processes with physio-chemical processes, electro-coagulation, adsorption, ultra-filtration, membrane, and advanced oxidation) are critically reviewed; their challenges and the future perspectives in textile wastewater treatment are also highlighted.