The results of studying semiconductor structures proposed for the first time and grown, which combine the properties of LT-GaAs with p -type conductivity upon doping with Si, are presented. The structures are {LT-GaAs/GaAs:Si} superlattices, in which the LT-GaAs layers are grown at a low temperature (in the range 280–350°C) and the GaAs:Si layers at a higher temperature (470°C). The p -type conductivity upon doping with Si is provided by the use of GaAs(111)A substrates and the choice of the growth temperature and the ratio between As_4 and Ga fluxes. The hole concentration steadily decreases, as the growth temperature of LT-GaAs layers is lowered from 350 to 280°C, which is attributed to an increase in the roughness of interfaces between layers and to the formation of regions depleted of charge carriers at the interfaces between the GaAs:Si and LT-GaAS layers. The evolution of the photoluminescence spectra at 77 K under variations in the growth temperature of LT-GaAs is interpreted as a result of changes in the concentration of Ga_As and V _Ga point defects and Si_Ga– V _Ga, V _As–Si_As, and Si_As–Si_Ga complexes.