We present a new approach to enforcing local maximum principles in finite element schemes for the compressible Euler equations. In contrast to synchronized limiting techniques for systems of conservation laws, the density, momentum, and total energy are constrained in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum are adjusted to incorporate the irreversible effect of density changes. Then the corresponding antidiffusive corrections are limited to satisfy inequality constraints for the total and kinetic energy. The same element-based limiting strategy is employed in the context of continuous and discontinuous Galerkin methods. The sequential nature of the new limiting procedure makes it possible to achieve crisp resolution of contact discontinuities while using sharp local bounds in the energy constraints. A numerical study is performed for piecewise-linear finite element discretizations of 1D and 2D test problems.