To improve solid waste resource utilization and environmental sustainability, an alkali-activated material (AAM) was prepared using steel slag (SS), fly ash, blast furnace slag and alkali activators in this work. The evolutions of SS content (10–50%) and alkali equivalent (4.0–8.0%) on workability, mechanical strength and environmental indicators of the AAM were investigated. Furthermore, scanning electron microscopy, X-ray diffraction and nuclear magnetic resonance techniques were adopted to characterize micromorphology, reaction products and pore structure, and the reaction mechanism was summarized. Results showed that the paste fluidity and setting time gradually increased with the increase in SS content. The highest compressive strength was obtained for the paste at 8.0% alkali equivalent due to the improved reaction rate and process, but it also increased the risk of cracking. However, SS was able to exert a microaggregate filling effect, where SS particles filling the pores increased the structural compactness and hindered crack development. Based on the optimal compressive strength, global warming, abiotic resource depletion, acidification and eutrophication potential of the paste are reduced by 76.7%, 53.0%, 51.6%, and 48.9%, respectively, compared with cement. This work is beneficial to further improve the utilization of solid waste resources and expand the application of environmentally friendly AAMs in the field of construction engineering.