Polyethylene (PE) and its variations are among the most traditional materials used for cushioning in packaging systems. The role of these materials is to prevent damages during handling and distribution processes from physical events such as vibration stress. This study presents new results on the characterization of properties of PE and XPE (cross-linked polyethylene) packaging materials, which have significant relevance as a protective mechanism due to their vibration transmissibility and frequency curve properties. The main goal of this study is the evaluation of vibration transmissibility of PE and XPE cushion material at varied real temperature and static load conditions through a series of experiments using a vibration tester and climate chamber to determine the peak frequencies, vibration transmissibility, and damping ratios. The results can be used by engineers in the package-design process, and can be useful in different distribution conditions. Three different kinds of static loads and a 0.5 oct/min sine sweep of vibration test were used to find the peak frequencies and vibration transmissibility at −20 °C, 0 °C, 20 °C and 40 °C to estimate the damping ratios. The results provided a better understanding of the materials and can assist in the design of suitable protective packaging systems.