2018
DOI: 10.1208/s12249-018-1032-1
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of a Coupling Process for Insulin Degludec According to a Quality by Design (QbD) Paradigm

Abstract: This case study described a successful application of the quality by design (QbD) principles to a coupling process development of insulin degludec. Failure mode effects analysis (FMEA) risk analysis was first used to recognize critical process parameters (CPPs). Five CPPs, including coupling temperature (Temp), pH of desB30 solution (pH), reaction time (Time), desB30 concentration (Conc), and molar equivalent of ester per mole of desB30 insulin (MolE), were then investigated using a fractional factorial design… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 19 publications
0
1
0
Order By: Relevance
“…In practice, confirmation of the target DMSO concentration may be inferred by proxy through comparison of osmolality and T cell quality/quantity before and after the formulation step and post-thaw. Analysing the risk of excipient concentrations lying outside the formulation design space can be computed by Monte Carlo simulation applied to failure mode effects analysis (FMEA) [ 29 ].…”
Section: Fill–finish and Monte Carlo Simulationmentioning
confidence: 99%
“…In practice, confirmation of the target DMSO concentration may be inferred by proxy through comparison of osmolality and T cell quality/quantity before and after the formulation step and post-thaw. Analysing the risk of excipient concentrations lying outside the formulation design space can be computed by Monte Carlo simulation applied to failure mode effects analysis (FMEA) [ 29 ].…”
Section: Fill–finish and Monte Carlo Simulationmentioning
confidence: 99%