2016
DOI: 10.4236/jep.2016.76080
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of Air Quality Monitoring Network Using GIS Based Interpolation Techniques

Abstract: This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coeffic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(7 citation statements)
references
References 41 publications
0
5
0
2
Order By: Relevance
“…There are several techniques that are involved in interpolation which are inverse distance weighted (IDW), kriging, spline and natural neighbour. IDW has been chosen as the technique that was used because its interpolation works by estimating cell values by averaging the values of sample data points in the neighbourhood of each processing cell (Shareef et al, 2016). Besides that, IDW is the common practice technique that has been used.…”
Section: Interpolation Of Datamentioning
confidence: 99%
“…There are several techniques that are involved in interpolation which are inverse distance weighted (IDW), kriging, spline and natural neighbour. IDW has been chosen as the technique that was used because its interpolation works by estimating cell values by averaging the values of sample data points in the neighbourhood of each processing cell (Shareef et al, 2016). Besides that, IDW is the common practice technique that has been used.…”
Section: Interpolation Of Datamentioning
confidence: 99%
“…O Ministério do Meio Ambiente estabeleceu legislação pertinente para definição dos poluentes atmosféricos, através do CONAMA, assim como, em São Paulo, a legislação estadual estabeleceu e revisou seus parâmetros para poluentes atmosféricos, com aplicação através da Companhia de Tecnologia do Estado de São Paulo, CETESB (CONAMA, 2011;MMA, 2018).Grande parte da legislação está dedicada aos cálculos de emissão para fontes móveis veiculares (automóveis, caminhões e motocicletas), e fontes fixas estacionárias (chaminés). Entretanto, quase nada há relacionado ao cálculo de emissões atmosféricas para incêndios, e principalmente, incêndios em derivados de petróleo (HUSAIN, 1996;SHAREEF;HUSAIN;ALHARBI, 2016), No Brasil existem registros de incêndios em processos petroquímicos, no entanto, não se encontra registros de inventário ou cálculo de emissões decorrentes de incêndios com petróleo ou derivados. Alguns estudos têm sido realizados com a queima em ambientes abertos de petróleo e derivados, o que nos permite conhecer um pouco mais da dimensão destes impactos ambientais pelas emissões atmosféricas de MP, NOx, CO, SOx, Gases do Efeito Estufa (GEE) dentre outros (LEMIEUX;LUTES;SANTOIANNI, 2004;SHAREEF;HUSAIN;ALHARBI, 2016;GULLETT et al, 2017;KUMAR et al, 2020).…”
Section: Introductionunclassified
“…Entretanto, quase nada há relacionado ao cálculo de emissões atmosféricas para incêndios, e principalmente, incêndios em derivados de petróleo (HUSAIN, 1996;SHAREEF;HUSAIN;ALHARBI, 2016), No Brasil existem registros de incêndios em processos petroquímicos, no entanto, não se encontra registros de inventário ou cálculo de emissões decorrentes de incêndios com petróleo ou derivados. Alguns estudos têm sido realizados com a queima em ambientes abertos de petróleo e derivados, o que nos permite conhecer um pouco mais da dimensão destes impactos ambientais pelas emissões atmosféricas de MP, NOx, CO, SOx, Gases do Efeito Estufa (GEE) dentre outros (LEMIEUX;LUTES;SANTOIANNI, 2004;SHAREEF;HUSAIN;ALHARBI, 2016;GULLETT et al, 2017;KUMAR et al, 2020).…”
Section: Introductionunclassified
“…On the other hand, many previous studies preferred to exclude records on days subject to a certain degree of missing values (e.g., no more than six missing values within 24 h) in their analysis (e.g., van Donkelaar et al, 2016;L. Li et al, 2017;Manning et al, 2018;Shen et al, 2018;Bai et al, 2019a;Zhang et al, 2019). Such a treatment of data gaps (e.g., ignoring missing values or excluding records on days with missingness) would either introduce new bias to the aggregated data record or make the original PM 2.5 time series temporally discontinuous, however.…”
Section: Introductionmentioning
confidence: 99%