From airplanes to electric vehicles and trains, modern transportation systems require large quantities of energy. These vast amounts of energy have to be produced somewhere—ideally by using sustainable sources—and then brought to the transportation system. Energy is a scarce and costly resource, which cannot always be produced from renewable sources. Therefore, it is critical to consume energy as efficiently as possible, that is, transportation activities need to be carried out with an optimal intake of energetic means. This paper reviews existing work on the optimization of energy consumption in the area of transportation, including road freight, passenger rail, maritime, and air transportation modes. The paper also analyzes how optimization methods—of both exact and approximate nature—have been used to deal with these energy-optimization problems. Finally, it provides insights and discusses open research opportunities regarding the use of new intelligent algorithms—combining metaheuristics with simulation and machine learning—to improve the efficiency of energy consumption in transportation.