In the present study, two numerical methods, namely the orthogonal collocation on finite elements and the fixed pivot technique, are employed to calculate the MWD in an MMA free‐radical batch suspension polymerization reactor operating up to very high conversions (e.g., ≥95%). The theoretical MWD predictions are directly compared with experimentally measured MWDs, obtained from a pilot‐scale batch MMA suspension polymerization reactor. It is shown that there is a very good agreement between model predictions and experimental measurements on both monomer conversion and MWD. Subsequently, two different time‐optimal temperature trajectories are calculated to obtain a polymer having either a narrow or a bimodal MWD in minimum batch time. The calculated time optimal trajectories are then applied, as set point temperature changes, to a pilot plant batch polymerization reactor. It is shown that the measured MWDs are in very good agreement with the off‐line calculated optimal MWDs.