Item clustering has become one of the most important topics in terms of effective inventory management in supply chains. Classification of items in terms of their features, sales or consumption volume and variation is a prerequisite to determine differentiated inventory policies as well as parameters, most common of which is service levels. Volume classification is easily obtained by well-known Pareto approach while coefficient of variance is usually used for variation dimension. Hence, it is not always applicable to classify items under different product families with different demand patterns in terms of variation. In this paper, we propose two algorithms, one based on statistical analysis and the other an unsupervised machine learning algorithm using K-means clustering, both of which differentiate seasonal and non-seasonal products where an item’s variation is evaluated with respect to seasonality of the product group it belongs to.