2022
DOI: 10.17816/ecogen112332
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of CRISPR/Cas9 method for transgenesis of model microalgae <i>Chlamydomonas reinhardtii</i>

Abstract: In this work we knocked out the LTS3 gene of the microalgae Chlamydomonas reinhardtii using the TIM technique optimized for the available equipment. We achieved transformation efficiency of 68.8%, knockout of this gene lead to the death of C. reinhardtii cells after several division cycles. The creation and study of genetically modified organisms in fundamental research allows a deeper understanding of the basic processes in the cells with the prospect of further applying this knowledge in practice. Micr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 3 publications
0
1
0
Order By: Relevance
“…To date, four transformation methods (Agrobacterium-mediated, particle bombardment, glass beads agitation, electroporation) have been successfully used for editing (knock-in and knock-out) the C. reinhardtii genome with two types of CRISPR constructs (plasmid and ribonucleoprotein). The developed protocols make it possible to achieve high efficiency of genomic editing -for example, in our study it varied from 10.6% to 68.8% [4]. These benefits along with completely sequenced genome, well-studied genetics, accessibility and haplontic life cycle makes C. reinhardtii an outstanding model organism for CRISPR/Cas application in microalgae research [5].…”
mentioning
confidence: 91%
“…To date, four transformation methods (Agrobacterium-mediated, particle bombardment, glass beads agitation, electroporation) have been successfully used for editing (knock-in and knock-out) the C. reinhardtii genome with two types of CRISPR constructs (plasmid and ribonucleoprotein). The developed protocols make it possible to achieve high efficiency of genomic editing -for example, in our study it varied from 10.6% to 68.8% [4]. These benefits along with completely sequenced genome, well-studied genetics, accessibility and haplontic life cycle makes C. reinhardtii an outstanding model organism for CRISPR/Cas application in microalgae research [5].…”
mentioning
confidence: 91%