The key research question in this study is how to cut pieces in irregular plate remainders, because there are many irregular plate leftovers created during the CNC (Computer Numerical Control) process. This will increase material utilization and allow plate leftovers to be reused. One of the issues being researched is how to arrange plate remainders on the surface of the CNC machine; this issue is known as combination layout optimization. The other issue being researched is combination cutting-path optimization of plate remainders, which aims to determine the cutting path of parts of plate remainders. A genetic algorithm based on the gravity-center NFP (No-Fit Polygon) method was applied to optimize the layout pattern, and then the geometric coordinates of a part included in one plate remainder after packing were obtained by geometric transformation with the help of a three-layer graphic data correlation model, which quickly identified the inside and outside contours of parts. A colony algorithm based on the mathematical model of cutting-path optimization was used to optimize the cutting path of the parts in the plate remainders. Finally, some simulation tests were performed to illustrate the feasibility and effectiveness of the proposed method. The results of the algorithm for packing irregular shapes for some instances show that our algorithm outperforms the other algorithms. On most instances, the average plate utilization ratio using our algorithm, after running 20 times, is improved by 1% to 9% in comparison to the best plate utilization ratio using the tree search algorithm. The best idle travel of an example achieved by the algorithm in this paper is 7632 mm after running the cutting-path optimization algorithm 20 times, while that of the traditional equivalent TSP (Traveling Salesman Problem) algorithm is 11,625 mm, which significantly demonstrates the efficiency of the algorithm.