The article is devoted to the quality of well casing at the Pyakyakhinskoye oil and gas condensate field. The issue of improving the quality of well casing is associated with many problems, for example, a large amount of work on finding the relationship between laboratory studies and actual data from the field; the difficulty of finding logically determined relationships between the parameters and the final quality of well casing. The text gives valuable information on a new approach to assessing the impact of various parameters, based on a mathematical apparatus that excludes subjective expert assessments, which in the future will allow applying this method to deposits with different rock and geological conditions. We propose using the principles of mathematical processing of large data sets applying neural networks trained to predict the characteristics of the quality of well casing (continuity of contact of cement with the rock and with the casing). Taking into account the previously identified factors, we developed solutions to improve the tightness of the well casing and the adhesion of cement to the limiting surfaces.