Optimization of electric power prediction of a combined cycle power plant using innovative machine learning technique
Efstratios L. Ntantis,
Vasileios Xezonakis
Abstract:Accurate prediction of electric power generation in combined cycle power plants is challenging yet crucial, especially when employing machine learning techniques like artificial neural networks. This research presents an advanced forecasting model based on the robust adaptive neuro‐fuzzy inference system to estimate electric power generation under full operating conditions. The research dataset comprises 9568 data points featuring four input parameters, including ambient temperature, ambient pressure, exhaust … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.