2022
DOI: 10.1007/s10706-022-02227-1
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…To assess damping non‐proportionality in a vibrating system through experimental or operational modal analyses, various indices have been developed based on mode shape complexity and can be found in the literature. One useful tool for gaining insight into the complexity and alignment of the mode shape is the MCF 42 . The MCF is calculated for mode r as normalMCFrgoodbreak=1goodbreak−SitalicxxSitalicyy2+4Sy2()Sxxgoodbreak+Syy2,$$ \mathrm{MC}{\mathrm{F}}_r=1-\frac{{\left({S}_{xx}-{S}_{yy}\right)}^2+4{S}_y^2}{{\left({S}_{xx}+{S}_{yy}\right)}^2}, $$ Sxxgoodbreak=normalReΨrTitalicRe{}Ψr;Syygoodbreak=normalImΨrTitalicIm{}Ψr;Sxygoodbreak=normalReΨrTitalicIm{}Ψr,$$ {S}_{xx}=\operatorname{Re}{\left\{{\varPsi}_r\right\}}^T\mathit{\operatorname{Re}}\left\{{\varPsi}_r\right\};{S}_{yy}=\operatorname{Im}{\left\{{\varPsi}_r\right\}}^T\mathit{\operatorname{Im}}\left\{{\varPsi}_r\right\};{S}_{xy}=\operatorname{Re}{\left\{{\varPsi}_r\right\}}^T\mathit{\operatorname{Im}}\left\{{\varPsi}_r\right\}, $$ where italicRe{}Ψr$$ \mathit{\operatorname{Re}}\left\{{\varPsi}_r\right\} $$ and italicIm{}Ψr$$ \mathit{\operatorname{Im}}\left\{{\varPsi}_r\right\} $$ are the real and imaginary components of the modal vector.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…To assess damping non‐proportionality in a vibrating system through experimental or operational modal analyses, various indices have been developed based on mode shape complexity and can be found in the literature. One useful tool for gaining insight into the complexity and alignment of the mode shape is the MCF 42 . The MCF is calculated for mode r as normalMCFrgoodbreak=1goodbreak−SitalicxxSitalicyy2+4Sy2()Sxxgoodbreak+Syy2,$$ \mathrm{MC}{\mathrm{F}}_r=1-\frac{{\left({S}_{xx}-{S}_{yy}\right)}^2+4{S}_y^2}{{\left({S}_{xx}+{S}_{yy}\right)}^2}, $$ Sxxgoodbreak=normalReΨrTitalicRe{}Ψr;Syygoodbreak=normalImΨrTitalicIm{}Ψr;Sxygoodbreak=normalReΨrTitalicIm{}Ψr,$$ {S}_{xx}=\operatorname{Re}{\left\{{\varPsi}_r\right\}}^T\mathit{\operatorname{Re}}\left\{{\varPsi}_r\right\};{S}_{yy}=\operatorname{Im}{\left\{{\varPsi}_r\right\}}^T\mathit{\operatorname{Im}}\left\{{\varPsi}_r\right\};{S}_{xy}=\operatorname{Re}{\left\{{\varPsi}_r\right\}}^T\mathit{\operatorname{Im}}\left\{{\varPsi}_r\right\}, $$ where italicRe{}Ψr$$ \mathit{\operatorname{Re}}\left\{{\varPsi}_r\right\} $$ and italicIm{}Ψr$$ \mathit{\operatorname{Im}}\left\{{\varPsi}_r\right\} $$ are the real and imaginary components of the modal vector.…”
Section: Methodsmentioning
confidence: 99%
“…One useful tool for gaining insight into the complexity and alignment of the mode shape is the MCF. 42 The MCF is calculated for mode r as…”
Section: 32mentioning
confidence: 99%