Elevators are an essential indoor transportation tool in high-rise buildings. The world is advocating the design concept of safety, energy-saving, and intelligence. We focus on improving operation speed and utilization efficiency of the elevator group. This paper proposed a real-time reservation elevator groups optimization algorithm, and a dynamic matrix iterative model has been established. The indoor navigation technology UWB is applied, which can help users to quickly find elevators. The manned equilibrium efficiency and running time equilibrium efficiency of elevator group are given. Moreover, the data filtering criterion formulas for user waiting time and elevator remaining space are defined. In this paper, three numerical examples are given. Example 1 is a single elevator in n-storey building. Example 2 is compared with different scheduling algorithms, such as FCFS, SSTF, LOOK, and SCAN algorithms, and the results show that our method has the advantages of short total running time and less round-trip frequency. At last, the matrix of numerical iteration results are visualized, and the data movement status of people on each floor can be observed. Example 3 introduced elevator group algorithms. For high-rise buildings, this paper adopts a high, medium, and low hierarchical management model; this model has high coordination, as well as fast response, batch process, and adaptive function. Finally, we also discussed and compared the complexity of single elevator and elevator group algorithms. Therefore, this method has great development potential and practical application value, which deserves further study.