Climate variation and land use changes have been widely recognized as two major factors that impact hydrological processes. However, it is difficult to distinguish their contributions to changes in streamflow. Quantifying their contributions to alteration of streamflow is especially important for the sustainable management of water resources. In this study, the changes in streamflow for the period of 1960–2008 at two stations (Dongwan and Luhun) were analyzed in the Yihe watershed in China based on hydrological data series and climate parameters. Using a non-parametric Mann–Kendall (MK) and Pettitt’s test, as well as Budyko analysis, we first examined the trends of hydroclimatic variables and the breakpoint of annual streamflow over the past 50 years. Subsequently, we evaluated the contributions of annual precipitation (P), potential evapotranspiration (PET), and land use condition (represented by w), respectively, to streamflow variation. We observed a decreasing trend for P, as well as increasing trends for PET and w. Annual streamflow showed a significant downward trend with an abrupt change occurring in 1985 during the period of 1960–2008. Accordingly, we divided the studied period into two sub-periods: period I (1960–1985) and period II (1986–2008). The sensitivity of the streamflow to the different environmental factors concerned in this study differed. Streamflow was more sensitive to P than to PET and w. The decrease in P was the greatest contributor to the decline in streamflow, which accounted for 50.01% for Dongwan and 55.36% for Luhun, followed by PET, which accounted for 24.25% for Dongwan and 24.45% for Luhun, and land use change was responsible for 25.25% for Dongwan and 20.19% for Luhun. Although land use change plays a smaller role in streamflow reduction, land use optimization and adjustment still have great significance for future water resource management, since climate variation is difficult to control; however, the pattern optimization of land use can be achieved subjectively.