For all machining cutting methods, surface roughness is a parameter that greatly affects the working ability and life of machine elements. Cutting force is a parameter that not only affects the quality of the machining surface but also affects the durability of cutter and the level of energy consumed during machining. Besides, material removal rate (MRR) is a parameter that reflects machining productivity. Workpiece surface machining with small surface roughness, small cutting force and large MRR is desirable of most machining methods. Milling is a popular machining method in the machine building industry. This is considered to be one of the most productive machining methods, capable of machining many different types of surfaces. With the development of the cutting tool and machine tool manufacturing industries, this method is increasingly guaranteed with high precision, sometimes used as the final finishing method. Milling using a face milling cutter is more productive than using a cylindrical cutter because there are multiple cutter s involved at the same time. This article presents a study of multi-objective optimization of milling process using a face milling cutter. The experimental material used in this study is X12M steel. Taguchi method has been applied to design an orthogonal experimental matrix with 27 experiments (L27). In which, five parameters have been selected as the input parameters of the experimental process including insert material, tool nose radius, cutting speed, feed rate and cutting depth. The Reference Ideal Method (RIM) is applied to determine the value of input parameters to ensure minimum surface roughness, minimum cutting force and maximum MRR. Influence of the input parameters on output parameters is also discussed in this study