The objective of this study was to determine the effect of chemical treatment on the coconut fiber surface morphology. This study is divided into three stages, preparation of materials, treatment and testing of coconut fiber. The first treatment is coconut fiber soaked in a solution of NaOH for 3 hours with concentration, respectively 5%, 10%, 15%, and 20%. The second treatment is coconut fiber soaked in KMnO 4 solution with a concentration of 0.25%, 0.5%, 0.75%, and 1% for 3 hours. The third treatment is coconut fiber is soaked in H 2 O 2 solution with a concentration of 5%, 10%, 15%, and 20% for 3 hours. At each treatment the fiber is dried in an oven at a temperature of 90 o C for 5 hours. Coconut fibers that had been the first, second, and third treated, sorted out for chemical composition, single fiber tensile and SEM testing. Tensile strength of single coconut fiber was tested following ASTM 3379-02 by using a tensile testing LR10K Plus 10 kN Universal Materials Testing Machine. The fiber surface morphology was examined using electron microscopy Vega3 Tescan Scanning Electron Microscope (SEM) at 5kV voltage, and X-ray diffraction, 30 kV, 15 mA, at scan speed 2.000 deg./min . The result shows that the highest tensile strength of the fiber obtained in the first treatment namely N4. In general the mechanical strength of the fiber decrease slightly however, the fiber surface morphology becomes rough. NaOH treatments cause crystallization on the surface of the fiber. Crystallinity index was decreased with increasing concentration of NaOH. The second treatment caused the trench grooves on the surface of the fiber that can improve bonding between fiber and matrix.