In this study, a layering method of carburized ring is presented. A finite element (FE) model for analyzing bearing stiffness characteristics is established considering the residual stress in the carburized layer. The residual stress in the carburized layer of a double-row conical roller bearing is tested and the influence of the distribution of residual stress in carburized layer on the bearing stiffness is investigated. Results show that the residual stress in the carburized layer increases the contact stiffness of the bearing by 5% in the low-load zone and 3% in the high-load zone. The radial stiffness of the bearing is increased by 5% in the low-load zone and 3% in the high-load zone. The axial stiffness is increased by 6%, and the angular stiffness increased by 4%. The larger the thickness of the carburized layer, the greater the residual compressive stress in the carburized layer, the deeper the position of the maximum residual stresses in the carburized layer will lead to the greater stiffness of the bearing.