This chapter discusses various approaches for calculating the modified Mie-Lorenz coefficients of the graphene-based multilayered cylindrical and spherical geometries. Initially, the Kubo model of graphene surface conductivity is discussed. Then, according to it, the formulations of scattering from graphene-based conformal particles are extracted. So, we have considered a graphene-wrapped cylinder and obtained its scattering coefficients by considering graphene surface currents on the shell. Later, a layered nanotube with multiple stacked graphene-dielectric interfaces is introduced, and for analyzing the plane wave scattering, graphene surface conductivity is incorporated in the transfer matrix method (TMM). Unlike the previous section, the dielectric model of graphene material is utilized, and the boundary conditions are applied on an arbitrary graphene interface, and a matrix-based formulation is concluded. Then, various examples ranging from super-scattering to super-cloaking are considered. For the scattering analysis of the multilayered spherical geometries, recurrence relations are introduced for the corresponding modified Mie-Lorenz coefficients by applying the boundary conditions at the interface of two adjacent layers. Later, for a sub-wavelength nanoparticle with spherical morphology, the full electrodynamics response is simplified in the electrostatic regime, and an equivalent circuit is proposed. Various practical examples are included to clarify the importance of scattering analysis for graphene-based layered spheres in order to prove their importance for developing novel optoelectronic devices.