2019
DOI: 10.1016/j.neucom.2019.05.030
|View full text |Cite
|
Sign up to set email alerts
|

Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
26
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 71 publications
(28 citation statements)
references
References 36 publications
0
26
0
2
Order By: Relevance
“…Before training and use, the network data are usually preprocessed for transformation into a new series that could be more efficiently processed to achieve more accurate predictions. A number of works [33,[38][39][40][41] have pointed out that splitting the time series into several sub-series, each of which retains a particular behavior of the original series, can improve forecasting accuracy. One of the simplest such decompositions is to split the time series into its trend and fluctuations.…”
Section: Resultsmentioning
confidence: 99%
“…Before training and use, the network data are usually preprocessed for transformation into a new series that could be more efficiently processed to achieve more accurate predictions. A number of works [33,[38][39][40][41] have pointed out that splitting the time series into several sub-series, each of which retains a particular behavior of the original series, can improve forecasting accuracy. One of the simplest such decompositions is to split the time series into its trend and fluctuations.…”
Section: Resultsmentioning
confidence: 99%
“…Khaldi et al [31] studied the effect of multi-step prediction strategies on the performance of long-and short-term recursive neural network models (SRN, LSTM, and GRU), and finally proposed corresponding strategies for the three models. Bento et al [32] proposed a novel Bat-inspired hybrid method integrating bat algorithm and scaled conjugate gradient algorithm to improve the learning ability of neural networks. Khaldi et al [16] studied the artificial neural network (ANN) combined with a signal decomposition technique to predict the weekly emergency department arrivals in hospitals.…”
Section: Literaturementioning
confidence: 99%
“…A previsão de demanda de carga é de grande relevância para os agentes da operação de sistemas elétricos de potência. A operação é fortemente dependente desta informação para o correto funcionamento de geradores, subestações e linhas [1], [2]. Através desta tarefa, os agentes do setor elétrico podem estimar a compra de energia baseada em demandas futuras e preços, minimizando a diferença entre a quantidade comprada e consumida [3].…”
Section: Introductionunclassified
“…Em contrapartida, com o desenvolvimento nas últimas décadas da inteligência computacional, modelos não-lineares como as redes neurais artificiais (RNAs) também têm sido considerados para previsão de cargas [15]. Tais métodos têm apresentando resultados satisfatórios em diversos contextos [2], [8], [16]. Em [8] os autores propõem a utilização de uma rede recorrente de Elman otimizada pelo algoritmo Otimização por Enxame de Partículas (Particle Swarm Optimization -PSO) para a tarefa.…”
Section: Introductionunclassified