The project aimed to develop porous materials for sustainable energy applications, namely, hydrogen storage, and valorization of biomass to renewable fuels. At the core of the project was a training programme for Africa-based researchers in (i) the exploitation of renewable locally available raw materials; (ii) the use of advanced state-of-the-art techniques for the design and synthesis of porous materials (zeolites and metal-organic frameworks (MOFs)) for energy storage; and (iii) the valorization of sustainable low-value feedstock to renewable fuels. We found that compaction of the UiO-66 MOF at high pressure improves volumetric hydrogen storage capacity without any loss in gravimetric uptake, and experimentally demonstrated the temperature-dependent dynamic behaviour of UiO-66, which allowed us to propose an activation temperature of ≤ 150°C for UiO-66. Co-pelletization was used to fabricate UiO-66/nanofibre monoliths as hierarchical porous materials with enhanced usable (i.e. deliverable) hydrogen storage capacity. We clarified the use of naturally occurring kaolin as a source of silica and alumina species for zeolite synthesis. The kaolin-derived zeolite X was successfully used as a catalyst for the transesterification of
Jatropha curcas
oil (from non-edible biomass) to biodiesel. We also prepared porous composites (i.e. carbon/UiO-66, organoclay/UiO-66 and zeolite/carbon) that were successfully applied in electrochemical sensing.