Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents a new methodology for determining the optimal coefficients of a PID controller for a four-switch buck–boost (FSBB) converter. The main objective of this research is to improve the performance of FSBB converters by fine-tuning the parameters of the PID controller using the newly developed Aquila Optimizer (AO). PID controllers are widely recognized for their simple yet effective control in FSBB converters. However, to further improve the efficiency and reliability of the control system, the PID control parameters must be optimized. In this context, the application of the AO algorithm proves to be a significant advance. By optimizing the PID coefficients, the dynamic responsiveness of the system can be improved, thus reducing the response time. In addition, the robustness of the control system is enhanced, which is essential to ensure stable and reliable operation under varying conditions. The use of AOs plays a key role in maintaining system stability and ensuring the proper operation of the control system even under challenging conditions. In order to demonstrate the effectiveness and potential of the proposed method, the performance of the AO-optimized PID controller was compared with that of PID controllers tuned by other optimization algorithms in the same test environment. The results show that the AO outperforms the other optimization algorithms in terms of dynamic response and robustness, thus validating the efficiency and correctness of the proposed method. This work highlights the advantages of using the Aquila Optimizer in the PID tuning of FSBB converters, providing a promising solution for improving system performance.
This paper presents a new methodology for determining the optimal coefficients of a PID controller for a four-switch buck–boost (FSBB) converter. The main objective of this research is to improve the performance of FSBB converters by fine-tuning the parameters of the PID controller using the newly developed Aquila Optimizer (AO). PID controllers are widely recognized for their simple yet effective control in FSBB converters. However, to further improve the efficiency and reliability of the control system, the PID control parameters must be optimized. In this context, the application of the AO algorithm proves to be a significant advance. By optimizing the PID coefficients, the dynamic responsiveness of the system can be improved, thus reducing the response time. In addition, the robustness of the control system is enhanced, which is essential to ensure stable and reliable operation under varying conditions. The use of AOs plays a key role in maintaining system stability and ensuring the proper operation of the control system even under challenging conditions. In order to demonstrate the effectiveness and potential of the proposed method, the performance of the AO-optimized PID controller was compared with that of PID controllers tuned by other optimization algorithms in the same test environment. The results show that the AO outperforms the other optimization algorithms in terms of dynamic response and robustness, thus validating the efficiency and correctness of the proposed method. This work highlights the advantages of using the Aquila Optimizer in the PID tuning of FSBB converters, providing a promising solution for improving system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.