Collichthys lucidus is an important small-scale economic fish species in the Yangtze River Estuary. To improve the accuracy of acoustic stock assessments for C. lucidus, it is necessary to accurately measure its target strength (TS). This study obtained precise morphological parameters of C. lucidus through X-ray scanning and established a Kirchhoff ray mode (KRM) model to simulate the changes in TS of the fish body and swimbladder at different acoustic frequencies and pitch angles. At the same time, the TS was measured using the tethered method to analyze and compare the broadband scattering characteristics obtained from both methods. An empirical formula of C. lucidus relating TS to body length at two conventional frequencies was established using the least squares method. The results show that the C. lucidus TS changes, with body length ranging from 10.91 to 16.61 cm, are significantly influenced by the pitch angle at 70 kHz and 200 kHz frequencies, and the fluctuation of TS for both the fish body and swimbladder increases with the rise in frequency. The broadband TS values estimated by the KRM model and measured by the tethered method fluctuate within in the ranges from −45 dB to −55 dB and −40 dB to −55 dB, respectively. The TS of C. lucidus tends to increase with the increase in swimbladder length. When the probability density function of the pitch angle is N(−5°, 15°), the b20 measured by the KRM and the tethered method at 70 kHz are −71.94 dB and −69.21 dB, respectively, while at 200 kHz they are −72.58 dB and −70.55 dB. This study provides a scientific basis for future acoustic target discrimination and stock assessment of C. lucidus in the Yangtze River Estuary.