Optimization of Smart Textiles Robotic Arm Path Planning: A Model-Free Deep Reinforcement Learning Approach with Inverse Kinematics
Di Zhao,
Zhenyu Ding,
Wenjie Li
et al.
Abstract:In the era of Industry 4.0, optimizing the trajectory of intelligent textile robotic arms within cluttered configuration spaces for enhanced operational safety and efficiency has emerged as a pivotal area of research. Traditional path-planning methodologies predominantly employ inverse kinematics. However, the inherent non-uniqueness of these solutions often leads to varied motion patterns in identical settings, potentially leading to convergence issues and hazardous collisions. A further complication arises f… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.