Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose The global construction industry faces both challenges and opportunities from electronic waste (e-waste). This study aims to present a bibliometric analysis and comprehensive literature assessment on e-waste in concrete construction materials. Design/methodology/approach This study studies 4,122 Scopus documents to examine garbage generation in different countries and inventive ways to integrate e-waste into construction as a sustainable strategy. This study lists famous researchers and their cooperation networks, demonstrating a robust and dynamic area with a surge in research output, notably from 2018 to 2022. Data is visually represented using VOS Viewer to show trends, patterns and study interests throughout time. Findings The findings imply that e-waste can improve construction materials’ mechanical characteristics and sustainability. The results are inconsistent and suggest further optimization. e-Waste into construction has garnered scientific interest for its environmental, life cycle, and economic impacts. This field has great potential for improving e-waste material use, developing sophisticated prediction models, studying environmental implications, economic analysis, policy formulation, novel construction methods, global cooperation and public awareness. This study shows that e-waste can be used in sustainable building. It stresses this area’s need for research and innovation. This lays the groundwork for using electronic trash in buildings, which promotes a circular economy and environmental sustainability. Research limitations/implications The findings underscore the critical role of ongoing research and innovation in leveraging e-waste for sustainable building practices. This study lays the groundwork for integrating e-waste into construction, contributing to the advancement of a circular economy and environmental sustainability. Social implications The social implications of integrating e-waste into construction are significant. Using e-waste not only addresses environmental concerns but also promotes social sustainability by creating new job opportunities in the recycling and construction sectors. It fosters community awareness and responsibility towards sustainable practices and waste management. Additionally, this approach can reduce construction costs, making building projects more accessible and potentially lowering housing prices. Originality/value This research contributes to the field by offering a bibliometric analysis and comprehensive assessment of e-waste in concrete construction materials, highlighting its global significance.
Purpose The global construction industry faces both challenges and opportunities from electronic waste (e-waste). This study aims to present a bibliometric analysis and comprehensive literature assessment on e-waste in concrete construction materials. Design/methodology/approach This study studies 4,122 Scopus documents to examine garbage generation in different countries and inventive ways to integrate e-waste into construction as a sustainable strategy. This study lists famous researchers and their cooperation networks, demonstrating a robust and dynamic area with a surge in research output, notably from 2018 to 2022. Data is visually represented using VOS Viewer to show trends, patterns and study interests throughout time. Findings The findings imply that e-waste can improve construction materials’ mechanical characteristics and sustainability. The results are inconsistent and suggest further optimization. e-Waste into construction has garnered scientific interest for its environmental, life cycle, and economic impacts. This field has great potential for improving e-waste material use, developing sophisticated prediction models, studying environmental implications, economic analysis, policy formulation, novel construction methods, global cooperation and public awareness. This study shows that e-waste can be used in sustainable building. It stresses this area’s need for research and innovation. This lays the groundwork for using electronic trash in buildings, which promotes a circular economy and environmental sustainability. Research limitations/implications The findings underscore the critical role of ongoing research and innovation in leveraging e-waste for sustainable building practices. This study lays the groundwork for integrating e-waste into construction, contributing to the advancement of a circular economy and environmental sustainability. Social implications The social implications of integrating e-waste into construction are significant. Using e-waste not only addresses environmental concerns but also promotes social sustainability by creating new job opportunities in the recycling and construction sectors. It fosters community awareness and responsibility towards sustainable practices and waste management. Additionally, this approach can reduce construction costs, making building projects more accessible and potentially lowering housing prices. Originality/value This research contributes to the field by offering a bibliometric analysis and comprehensive assessment of e-waste in concrete construction materials, highlighting its global significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.