One of the effective methods for studying any process is its physical modeling, during which it is possible to verify the concepts and hypothesis obtained previously by theoretical modeling. In the laboratory of metal forming of NUST “MISIS” there is ERW mill 30 – 50 for the production and simulation of processes for the continuous forming of longitudinal welded pipes of small and medium diameter, their welding and calibration. This article discusses the deformation zone of a pipe billet, using the first two stands of a molding mill as an example with a calibration of a roll tool for a pipe diam. 50×1.5 mm. Based on the analysis of methods for calculating the parameters of real roll calibers, a model of contact interaction of the pipe billet with the first and second roll open stands was developed and areas of the deformation zone were determined including their sizes: non-intensive and intense impact; input and output contact zones; springing up. Analyzing the conditions of contact interaction of the pipe billet with roll calibers, parameters of the pipe billet in contact with the first-caliber rolls were determined in seven sections, taking into account the features of continuous forming. An analysis of the results has shown that the maximum longitudinal deformation occurred at the edge of the billet in section B – B and was equal to 1.04 %, and for the pipe billet bottom it was 0.92 %. For the experiment, a grid was applied to the pipe billet using a laser engraver. During forming, the trajectory deviation of the pipe billet bottom from horizontal axis was recorded, and sizes of the forming sections were determined. Comparison of theoretical and experimental values has shown that the discrepancy between them does not exceed 7 %.