Transforming individual carbon nanotubes (CNTs) into bulk form is necessary for the utilization of the extraordinary properties of CNTs in sensor applications. Individual CNTs are randomly arranged when transformed into the bulk structure in the form of buckypaper. The random arrangement has many pores among individual CNTs, which can be treated as gaps or defects contributing to the degradation of CNT properties in the bulk form. A novel technique of filling these gaps is successfully developed in this study and termed as a gap-filling technique (GFT). The GFT is implemented on SWCNT-based buckypaper in which the pores are filled through small-size MWCNTs, resulting in a ~45.9% improvement in packing density. The GFT is validated through the analysis of packing density along with characterization and surface morphological study of buckypaper using Raman spectrum, particle size analysis, scanning electron microscopy, atomic force microscopy and optical microscopy. The sensor characteristics parameters of buckypaper are investigated using a dynamic mechanical analyzer attached with a digital multimeter. The percentage improvement in the electrical conductivity, tensile gauge factor, tensile strength and failure strain of a GFT-implemented buckypaper sensor are calculated as 4.11 ± 0.61, 44.81 ± 1.72, 49.82 ± 8.21 and 113.36 ± 28.74, respectively.