Innovative tungsten (W) extraction techniques are continually being sought because of challenges of low leaching efficiencies, despite using advanced processing units such as autoclaves operating high temperatures and pressures. Compared to conventional leaching, mechanochemical treatment improves the efficiency of leaching. Therefore, in this study, an innovative mechanochemical treatment method, referred to as leaching while grinding (LWG), was employed as a reprocessing option to optimize W recovery from historical tungsten tailings. Experiments were run using the regular two-level factorial design to screen through the four factors of stirrer speed, liquid/solid ratio, temperature, and digestion time to assess their criticality and effects in the LWG process. The stirrer speed and the liquid/solid ratio were the most critical factors in the optimization of W recovery. The maximum W recovery (91.2%) was attained at the highest stirrer speed (410 rpm), low liquid/solid ratio (0.8), long digestion time (6 h), and low leaching temperature (60 °C). The attained low leaching temperature (60 °C) was due to the mechanical activation of scheelite resulting from the simultaneous grinding and leaching. For such low- grade W material, liquid/solid ratio optimizing is critical for maintaining the digestion mixture fluidity, and for environmental and economic sustainability regarding the sodium hydroxide (NaOH) consumption, which was low.