Asynchronous injection–production cycle (AIPC) in a horizontal–vertical well pattern is an efficient strategy for enhancing water injection in tight reservoirs. However, current studies lack consideration of waterflood-induced fractures (WIFs) caused by long-term water injection. This paper takes block Z in the Ordos Basin, China, as the research object and first clarifies the formation conditions of WIFs considering the horizontal principal stress and flow line. Then, the pressure-sensitive permeability equations for the induce-fracture region between wells are derived. Finally, the WIFs characteristics in a horizontal–vertical well network with different injection modes are discussed by numerical simulation. The results show that WIFs preferentially form where flow aligns with the maximum principal stress, influencing permeability distribution. Controlling the injection rate of vertical wells on the maximum principal stress and flow line and cyclically adjusting the production rate of horizontal wells can regulate the appropriate propagation of WIFs and expand the swept areas. The parallel injection mode (PIM) and the half-production injection mode are superior to the full-production injection mode. This study can provide theoretical support for the effective development of tight oil reservoirs.