Xylan is the primary hemicellulosic polymer found in lignocellulosic agricultural wastes and can be degraded by xylanase. In the current research, Mucor circinelloides and M. hiemalis were tested for their ability to produce xylanase from tangerine peel by submerged fermentation. Experiments on five variables were designed with Box–Behnken design and response surface methodology. Analysis of variance was exercised, the xylanase output was demonstrated with a mathematical equation as a function of the five factors, and the quixotic states for xylanase biosynthesis was secured. In addition, xylanase was partially purified, characterized, and immobilized on calcium alginate beads. The optimum parameters for xylanase production by M. circinelloides and M. hiemalis were consisted of incubation temperature (30 and 20°C), pH value (9 and 7) incubation period (9 and 9 days), inoculum size (3 and 3 mL), and substrate concentration (3 and 3 g/100 mL), respectively. M. circinelloides and M. hiemalis demonstrated the highest xylanase activities after RSM optimization, with 42.23 and 35.88 U/mL, respectively. The influence of single, interchange, and quadratic factors on xylanase output was investigated using nonlinear regression equations with significant
R
2
and
p
values. The partial purification of M. circinelloides and M. hiemalis xylanase yielded 1.69- and 1.97-fold purification, and 30.74 and 31.34% recovery with 292.08 and 240.15 U/mg specific activity, respectively. Partially purified xylanase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH and 60 and 50°C, respectively. The immobilized M. circinelloides and M. hiemalis xylanase retained 84.02 and 79.43% activity, respectively. The production of xylanase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of the agro-industrial wastes.