Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images
Roberto Perera,
Davide Guzzetti,
Vinamra Agrawal
Abstract:Additively manufactured metals exhibit heterogeneous microstructure which dictates their material and failure properties. Experimental microstructural characterization techniques generate a large amount of data that requires expensive computationally resources. In this work, an optimized machine learning (ML) framework is proposed to autonomously and efficiently characterize pores, particles, grains and grain boundaries (GBs) from a given microstructure image. First, using a classifier Convolutional Neural Net… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.