As advances in single-cell technologies enable the unbiased assay of thousands of cells simultaneously, human disease studies are able to identify clinically associated cell states using case-control study designs. These studies require precious clinical samples and costly technologies; therefore, it is critical to employ study design principles that maximize power to detect cell state frequency shifts between conditions, such as disease versus healthy. Here, we present single-cell Power Simulation Tool (scPOST), a method that enables users to estimate power under different study designs. To approximate the specific experimental and clinical scenarios being investigated, scPOST takes prototype (public or pilot) single-cell data as input and generates large numbers of single-cell datasets in silico. We use scPOST to perform power analyses on three independent single-cell datasets that span diverse experimental conditions: a batch-corrected 21-sample rheumatoid arthritis dataset (5,265 cells) from synovial tissue, a 259-sample tuberculosis progression dataset (496,517 memory T cells) from peripheral blood mononuclear cells (PBMCs), and a 30-sample ulcerative colitis dataset (235,229 cells) from intestinal biopsies. Over thousands of simulations, we consistently observe that power to detect frequency shifts in cell states is maximized by larger numbers of independent clinical samples, reduced batch effects, and smaller variation in a cell state’s frequency across samples.