Background
The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural control capability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets.
Results
We developed an efficient algorithm to identify all control hubs, applying it to the largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach's effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients.
Conclusions
Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery.