Techniques of performance analysis, comprising of various metrics such as accuracy, efficiency and consuming time, have been conducted to evaluate the measures of properties and interestingness for the association rule mining method. Therefore, these metrics combined with different parameters (partitioning points, fuzzy sets) should be analysed thoroughly and balanced simultaneously to enhance the entire performance (effectiveness, accuracy and efficiency) for an algorithm. As a result, Most of the current algorithms face the pressure from the tradeoff of these metrics and parameters, which becomes even rougher when we employ it in different resources of data (discrete data, categorical data and continuous data). Specifically, serial data (i.e., sequences or transactions of floating point numbers), such as analysis of sensor streaming data, financial streaming data, medical streaming data and sentimental streaming data, are different from discrete variables, such as boolean data (e.g., sentiment: negative and positive represented as '0' and '1' separately) and categorical